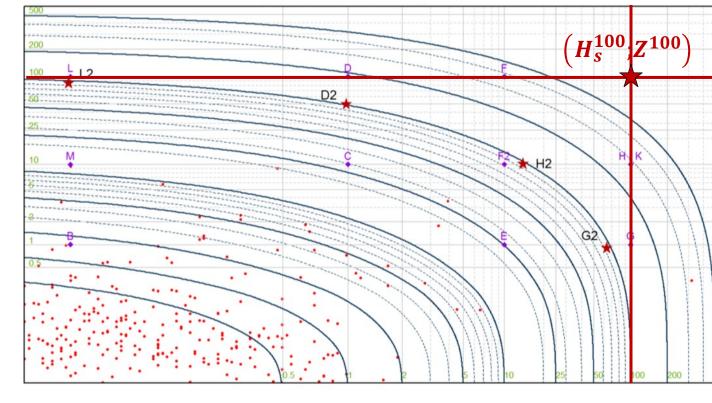


Journées Méditerranéennes de l'AIPCN et Assises du port du futur du Cerema 25 au 27 octobre 2023 à Sete France

Prise en compte de la remontée eustatique du niveau moyen dans les analyses conjointes houle-niveau pour le dimensionnement des ouvrages portuaires Franck MAZAS, ARTELIA

Exemple du port de La Cotinière (Charente-Maritime)

© Vinci



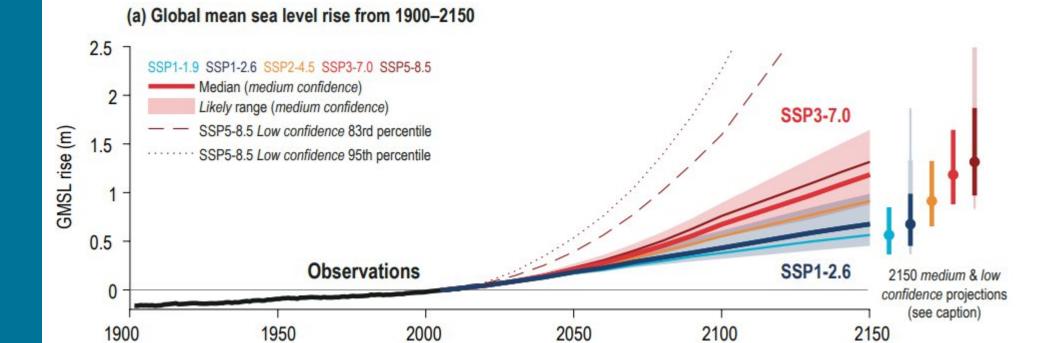
Hs (m)

Exemple du port de La Cotinière (Charente-Maritime)

La Cotinière - Niveau marin/Hs

Niveau marin (m ZHC)

Enjeux



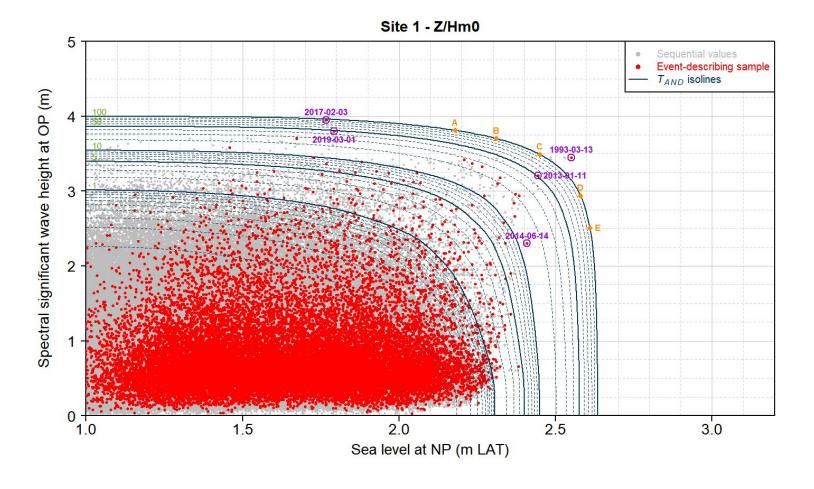
Journées Méditerranéennes de l'AIPCN et Assises du port du futur du Cerema - 26 octobre 2023 - Sète

Evolution du niveau moyen de la mer lors de la durée de vie du projet

Enjeux

Comment intégrer cette remontée dans le dimensionnement ?

Enjeux



Distribution conjointe houle-niveau dans l'état actuel

Enjeux

Rappel : qu'est-ce qu'une période de retour ?

Non pas vraiment

« la durée moyenne entre deux occurrences d'un évènement »

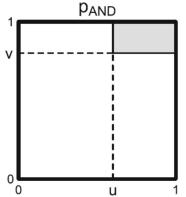
Mais plutôt :

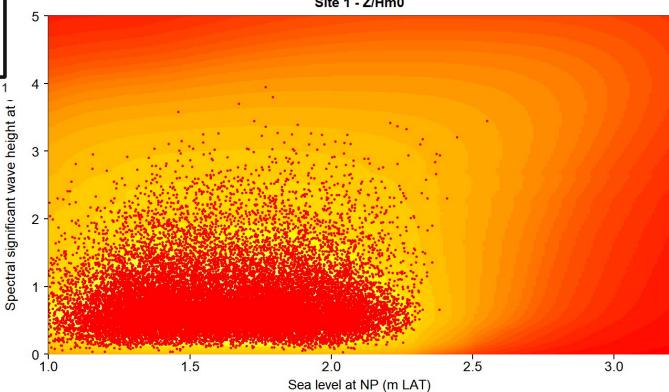
« la probabilité annuelle d'atteindre ou dépasser la valeur considérée... »

$$\mathcal{T} = \frac{1}{\lambda \mathbb{P}_A}$$

Enjeux

Enjeux Méthodologie « ... à prendre en compte chaque année de la durée de vie du projet ! »




Période de retour bivariée :

$$\mathcal{T}_{AND} = \frac{1}{\lambda \mathbb{P}\left[X > x, Z > z\right]}$$

Approche basée sur la **probabilité de rencontre** \mathbb{P}_{E} , probabilité de rencontrer *au moins une fois* lors de la durée de vie de l'ouvrage l'évènement dimensionnant de période de retour T_r :

$$\mathbb{P}_{E} = 1 - \left(\mathbb{P}_{Annee\ 1} \times \mathbb{P}_{Annee\ 2} \times \dots \times \mathbb{P}_{Annee\ D} \right)$$

Dans un cadre stationnaire :

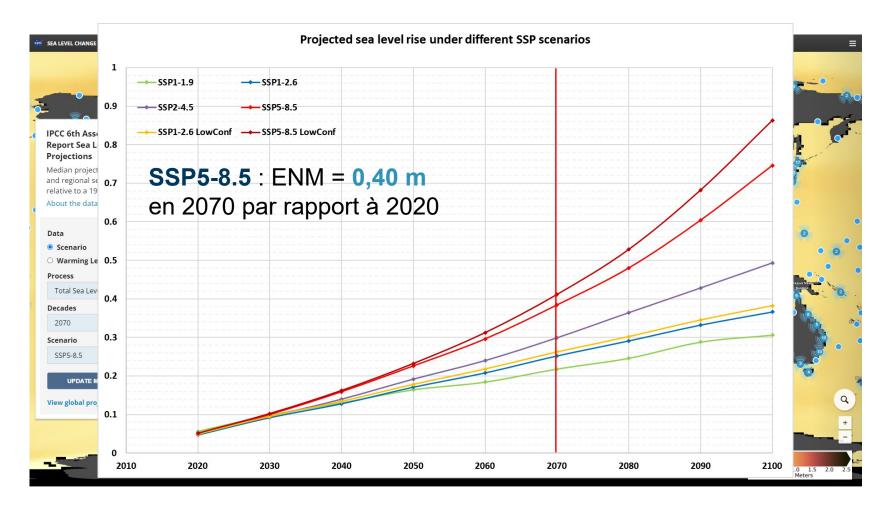
$$\mathbb{P}_E = 1 - (1 - \lambda \mathbb{P}[X > x, Z > z])^D$$

$$\mathbb{P}_E = 1 - \left(1 - \frac{1}{T_r}\right)^D$$

	1	5	10	25	50	75	100
5	0,20	0,67	0,89	1,00	1,00	1,00	1,00
10	0,10	0,41	0,65	0,93	0,99	1,00	1,00
50	0,02	0,10	0,18	0,40	0,64	0,78	0,87
100	0,01	0,05	0,10	0,22	0,39	0,53	0,63
200	0,01	0,02	0,05	0,12	0,22	0,31	0,39
500	0,00	0,01	0,02	0,05	0,10	0,14	0,18
1000	0,00	0,00	0,01	0,02	0,05	0,07	0,10
	10 50 100 200 500	5 0,20 10 0,10 50 0,02 100 0,01 200 0,01 500 0,00	5 0,20 0,67 10 0,10 0,41 50 0,02 0,10 100 0,01 0,05 200 0,01 0,02 500 0,00 0,01	5 0,20 0,67 0,89 10 0,10 0,41 0,65 50 0,02 0,10 0,18 100 0,01 0,05 0,10 200 0,01 0,02 0,05 500 0,00 0,01 0,02	5 0,20 0,67 0,89 1,00 10 0,10 0,41 0,65 0,93 50 0,02 0,10 0,18 0,40 100 0,01 0,05 0,10 0,22 200 0,01 0,02 0,05 0,12 500 0,00 0,01 0,02 0,05	5 0,20 0,67 0,89 1,00 1,00 10 0,10 0,41 0,65 0,93 0,99 50 0,02 0,10 0,18 0,40 0,64 100 0,01 0,05 0,10 0,22 0,39 200 0,01 0,02 0,05 0,12 0,22 500 0,00 0,01 0,02 0,05 0,10	5 0,20 0,67 0,89 1,00 1,00 1,00 10 0,10 0,41 0,65 0,93 0,99 1,00 50 0,02 0,10 0,18 0,40 0,64 0,78 100 0,01 0,05 0,10 0,22 0,39 0,53 200 0,01 0,02 0,05 0,12 0,22 0,31 500 0,00 0,01 0,02 0,05 0,10 0,14

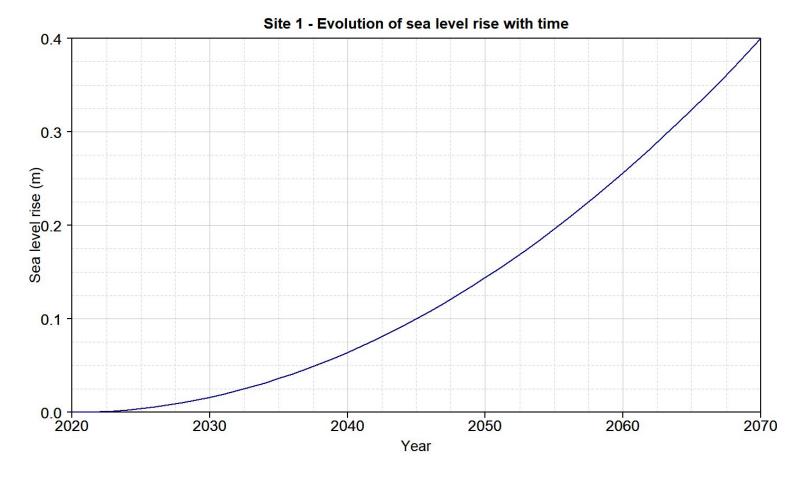
Durée de vie (ans)

Enjeux



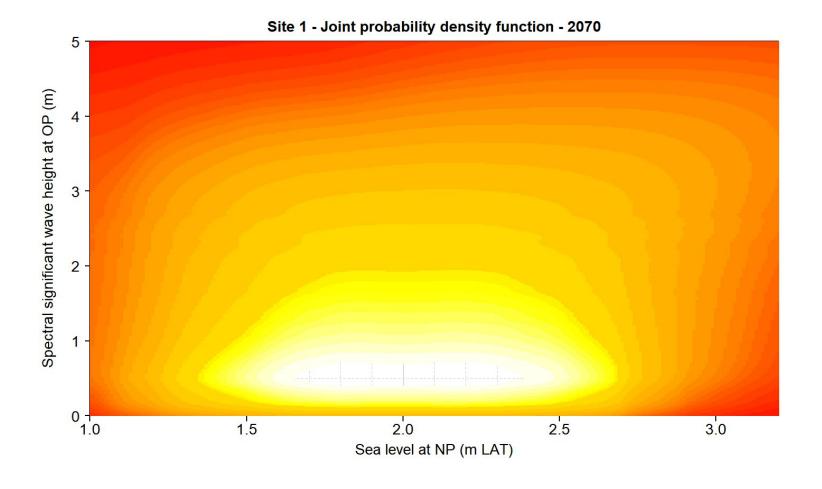
Choix d'un scénario de remontée eustatique

Enjeux



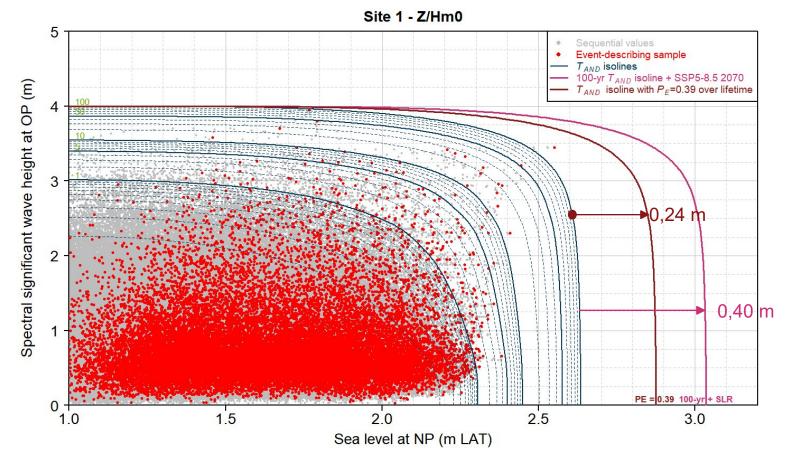
Méthodologie

Détermination de la remontée attendue pour chaque année sur la durée de vie du projet



Décalage année après année de la probabilité $\mathbb{P}\left[X>x,Z>z\right]$

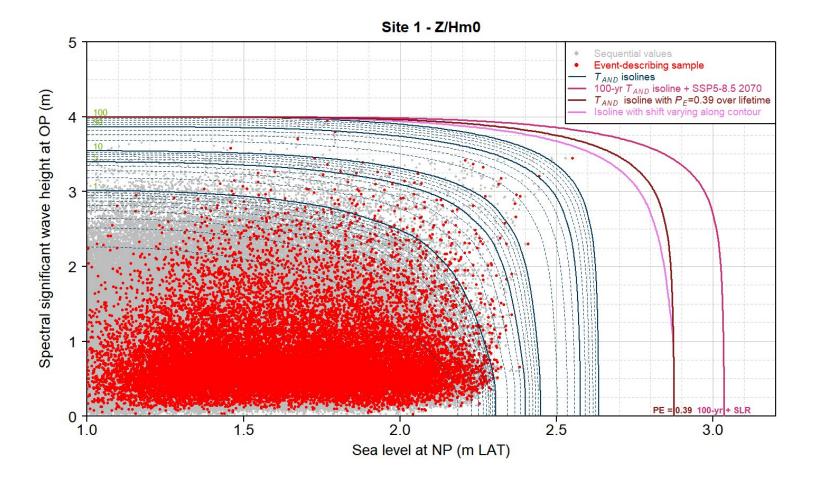
Enjeux Méthodologie



Enjeux Méthodologie

Méthodologie

Résultats pour les contours de période de retour de dépassement conjoint \mathcal{T}_{AND} : décalage de 0,24 m pour une valeur finale d'ENM de 0,40 m



En réalité, décalage non constant sur tout le contour

Enjeux

Méthodologie

Conclusions

Conclusions

- Approche basée sur un aléa évalué sur toute la durée de vie du projet (débat à ouvrir sur le choix d'une valeur de \mathbb{P}_E plutôt que \mathcal{T}_r ...)
- Permet d'éviter un surdimensionnement et ses conséquences :
 - ✓ surcoût économique
 - ✓ durée des travaux
 - ✓ surconsommation des matériaux (béton, enrochements...)
 - ✓ empreinte visuelle
- □ Permet d'envisager une structure adaptative (facilement reprise en cours de durée de vie), au fur et à mesure que l'ENM se précise :
 - ✓ quais en escalier
 - ✓ murs de couronnement réhaussables
 - ✓ ajout d'un mur chasse-mer entre le sommet de l'éperon et le mur du fort
 - **√** ...

Conclusions

Attention à la dépendance houle – niveau liée à la hauteur d'eau lors de la propagation (choix du point d'analyse)

L'élévation du niveau marin ne mènera pas forcément toujours à une réponse de l'ouvrage plus pénalisante ! (effort sur mur vertical passant d'un régime impactant à non impactant si l'augmentation de la profondeur retarde le déferlement)

□ Possibilité d'intégrer une probabilité marginale des hauteurs d'états de mer variant au cours du temps et / ou une modification de la forme de la probabilité marginale des niveaux marins (changement du régime de marée et / ou de surcotes)

Enjeux

Méthodologie

Conclusions

Des questions?

Enjeux

Méthodologie

Conclusions

Questions

www.arteliagroup.com