

PIANC Mediterranean Days and Conference «Port of the future» by Cerema 25 to 27 october 2023 in Sete France

Climate change minimization in port developments located in sensitive and complex areas

Valentino E.⁽¹⁾, Zarra T.^(2,3), Mariniello A.⁽²⁾, Oliva G.⁽²⁾, Marino V.^(2,3), Lalicata G.⁽¹⁾, Caputo F.⁽¹⁾, Naddeo V.^(2,3), Belgiorno V.^(2,3)

- 1. Autorità di Sistema Portuale del Mar Tirreno Centrale, Salerno (Italy)
- 2. Sanitary Environmental Engineering Division (SEED) Department of Civil Engineering, University of Salerno (Italy)
- 3. CUGRI, Inter-University Consortium for the Prediction and Prevention of Major Hazards University of Salerno (Italy)

MAIN SOURCES

PIANC French Section

STATE OF THE ART

Conventional systems

Air quality monitoring provides information regarding the status of present air quality. It helps in evaluating the existing policies and their effective implementation (Sunil et al., 2014)

Innovative systems

In many cases, the overall system uses Internet of Things (IoT) technology to control and manage large assemblies of measurement devices (Low Cost Sensors). The main problem related to the use of LCS is their accuracy and repeatability (Michalski et al., 2022)

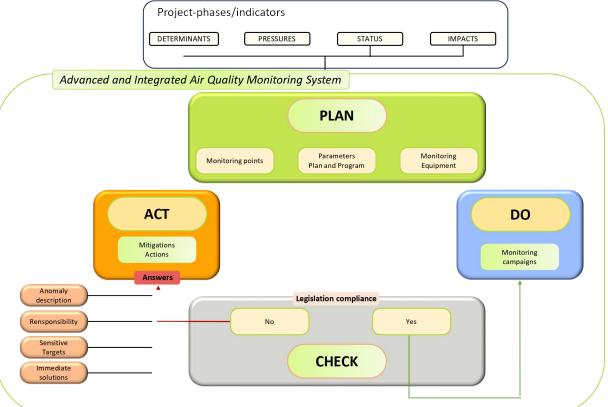
critical issues!

Air quality monitoring in complex areas is still a challenge for the modern community, in relation to the *lack of standardized or univocally defined and universally recognized systems and procedures* (Zheng et al., 2016)

Scope and Objective

Development of an <u>advanced and integrated</u>
<u>Air Quality Monitoring System (aiAQMS)</u>

Application and **validation** of the *aiAQMS* on a real case study, located in a complex and sensitive area


- ✓ reduction of environmental impacts
- ✓ overcome the existing lack of information and the highlighted critical issues

PORT OF SALERNO: SITE AREA

Italy – Campania - Salerno

Total surface area: 1.700.000 m²

Cargo handled pro year: 14.326.847 t

Passengers (2019): 865.000

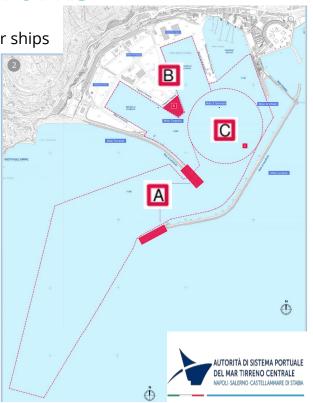
4 piers: Manfredi, Levante, Ponente and Trapezio

PORT OF SALERNO: enhancement works

Three macro-interventions:

A enlargement of the port entrance

extension of the Molo Manfredi


deepening of the seabed

Main objective of works: to allow host larger ships

Start of the works: 2020

Subject to the EIA (Environmental Impact Assessment) procedure

PLAN: program and parameters

C.U.G.RI.

Consorzio inter-Universitario per la Previsione e Prevenzione dei Grandi RIschi Università di Salerno - Università di Napoli "Federico II"

	Phase	Campaign		Total number of
Phase	duration	Frequency	Duration	campaigns
AO	4 monts	2 months		2
10	24 months	half-yearly	30 days	4
РО	24 months	half-yearly		4

Table: Monitoring campaigns

Parameter	Acquisition criteria	Mediation period	Concentration
21440	24 hours	24 hours	50 μg/m³
PM10	24 hours	Annual	40 μg/m ³
СО	Average hourly value	24-hour hug hog the 8- hour moving average	10 mg/m ³
		1 hour	200 μg/m ³
NO_2	1 hour	1 hour (measured over 3 consecutive hours)	400 μg/m³
		Annual	40 μg/m³
NO _X	1 hour	Annual	30 μg/m ³
		1 hour	350 μg/m ³
SO ₂	1 hour	1 hour (measured over 3 consecutive hours)	500 μg/m³
302		Daily average	125 µg/m³
		Annual	20 μg/m ³
Benzene (C ₆ H ₆)	24 hours	Annual	5 μg/m ³
		1 hour	180 µg/m³
O ₃	1 hour	24-hour hug hog the 8- hour moving average	120 μg/m³
Arsenic	_		6,0 ng/m ³
Cadmium	24 hours	Annual	5,0 ng/m ³
Nichel			20,0 ng/m ³
Benzo(a)pyrene	24 hours	Annual	1,0 ng/m ³

Table: List of the monitored air pollutants

PLAN: monitoring points and stations

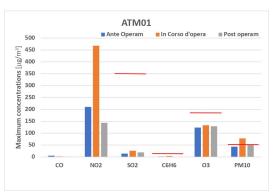

6 monitoring points

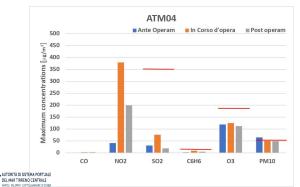
(3 within the port area, 3 outside the port area)

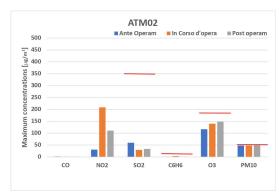
Monitoring equipment:

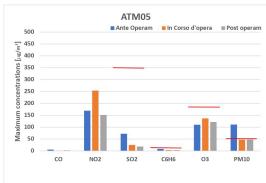
Fixed air quality **Monitoring Stations** (ATM01, ATM02, ATM03)

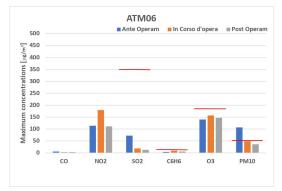
Mobile Monitoring Laboratory called "seedAIR" (ATM04, ATM05, ATM06)











- avoid traffic jams;
- turn off the engine when the vehicle is stationary;
- opening additional entrance/exit gate

CONCLUSIONS

Development and application of an *advanced and integrated Air Quality Monitoring System (aiAQMS)* for the air quality control in a complex area.

Results obtained highlight the importance to build a tailored advanced and integrated Air Quality Monitoring System in order to **avoid negative effects on the human health and the environment** and to **identify immediate mitigation actions in case of exceeding of the limits**.

Implementation of Air Quality Monitoring System is necessary to <u>ensure</u> <u>environmental protection</u> and the addition of a Spatial Information System would provide transparency of the acquired data.

