

PIANC Mediterranean Days and Conference «Port of the future» by Cerema 25 to 27 october 2023 in Sete France

THE BEHAVIOUR OF A MOORED SHIP IN WIND: THE DIFFERENCE BETWEEN A STATIC AND DYNAMIC MOORING ANALYSIS Lutz Schweter – Aktis Hydraulics Speaker: Luis López – Aktis Hydraulics

Aim of the paper

Joint effort from four consulting engineering professionals From different companies specialized in Mooring Analysis

Differences between Static / Dynamic mooring analysis (SMA/DMA) Dynamic amplification Factor (DAF)

Dynamic response moored ship Results real projects (ship moored in wind only) SAktis Hydraulics

ARCADIS

SCHWETER Lutz MISIAG Wojciech LOPEZ Luis VAN DEYZEN Alex Iutz.schweter@aktishydraulics.com wojciech.misiag@arcadis.com lopez@aktishydraulics.com alex.van.deyzen@RHDHV.com Aktis Hydraulics Arcadis Aktis Hydraulics (Siport XXI) Royal HaskoningDHV

Aim of the paper

The paper contains two examples:

- SuezMax Tanker moored at a jetty
- A Post New-Panamax container ship moored at a quay

This presentation shows the example for the SuezMax Tanker

Mooring analysis of a ship moored to a quay in wind

To determine mooring safety (mooring equipment) Mooring lines / Bollards / Fenders

i.e. limiting wind speeds / downtime

Difference between Static & Dynamic Mooring Analysis

- Show that a SMA for large ships in wind yields optimistic results
- Show results mooring analysis for one case SuezMax to be moored AfraMax Terminal
- DMA: Hourly mean wind speeds
- SMA: 10-minute mean and 30-seconds gust wind speeds
- Dynamic Amplification Factor (DAF):
 - Ratio maximum mooring line force based on DMA / SMA

Theoretical background

- Moored ship in wind = forced mass-spring system in 6 degrees of freedom
- Excited in 6 degrees of freedom Focus motions horizontal plane
- Force = wind (waves, current, passing ships, ...)
- Ship = mass
- Spring = lines & fenders (non-linear)

Theoretical background

- Theoretical approach showed for a simplified 1 DoF
- DAF depends on the dynamic characteristics of the system
 - ratios for mass, spring characteristics and damping
 - governing the natural frequencies of the system
- For the response of a moored ship:
 - Additional coupling effects between the 6 DoF

Methodology

- The difference between Static & Dynamic Mooring Analysis
- Show results mooring analysis for the moored SuezMax Tanker
- Applied software for both SMA & DMA:
- Ship-Moorings: To solve equations of motion in time domain Arcadis (Alkyon)
- Diffrac: To include added mass and damping ship in water Marin (www.marin.nl)

$$((M + a_{nn}) \ddot{\overline{X}}) + (b_{nn} \dot{\overline{X}}) + (c_{nn} \overline{X}) = \overline{F}_{wind}(t)$$

Methodology

- Main particulars
- Ballast condition (high windage area)
- 8 double drum winches
- 16 mooring wires (Minimum Breaking Load MBL 83.3t)
- with nylon tails (MBL 110t, WLL 55t)
- Working Load Limit (WLL 45.8t)

55% MBL (OCIMF)

Desian ship	Suezmax tanker
Cargo capacity DWT	158,000 t
Length over all LOA	274.0 m
Beam B	48.0 m
Draught T	7.6 m
Displacement Δ	78,500 t
Transverse windage area Awt	1,330 m ²
Longitudinal wind area Awl	5 530 m ²

Methodology

- Wind conditions:
 - Average wind speed 1-hour averaged wind speed U₃₆₀₀
- Static Analysis
 - 30-s averaged wind speed U₃₀
- Dynamic Analysis
 - API spectrum
 - 30-s gust wind speed
 - API (gust factor of 1.265)
 - The variation in the wind direction Udir
 - Simiu & Scanlan (1986)
 - 10 realizations

Udir [°N]	U ₃₆₀₀ [kn]	U ₃₀ [kn]				
0-330 in 30° steps	25, 30, 35, 40, 45, 50, 55	32, 38, 44, 51, 57, 63, 70				

Results

Maximum Line Loads

	U	1-311	ore	WIII	us			310	лел	winc	15	
Maximum line loads [kN]	Udir [°N]						Udir [°N]					
u	0	30	60	90	120	150	180	210	240	270	300	330
DYNAMIC u3600=50kn	412	150	104	125	173	239	381	845	948	1022	857	532
STATIC [u=u3600] u=50kn	240	137	90	79	123	174	183	222	268	228	223	167
DAF ₃₆₀₀	1.7	1.1	1.2	1.6	1.4	1.4	2.1	3.8	3.5	4.5	3.8	3.2
STATIC [u=u30] u=63kn	389	189	96	81	159	271	284	369	436	372	367	242
DAF ₃₀	1.1	0.8	1.1	1.6	1.1	0.9	1.3	2.3	2.2	2.7	2.3	2.2
STATIC [u=u30] incl. safety factor 1.5	584	283	145	121	239	407	426	554	653	557	551	363
DAF ₃₀	0.7	0.5	0.7	1.0	0.7	0.6	0.9	1.5	1.5	1.8	1.6	1.5
DYNAMIC u3600=35kn	159	111	90	103	118	143	157	349	454	406	345	185
STATIC [u=u3600] u=35kn	139	106	85	77	98	118	122	116	128	111	104	118
DAF ₃₆₀₀	1.1	1.1	1.1	1.3	1.2	1.2	1.3	3.0	3.5	3.7	3.3	1.6
STATIC [u=u30] u=44kn	189	123	88	78	112	149	156	175	205	178	173	146
DAF ₃₀	0.8	0.9	1.0	1.3	1.1	1.0	1.0	2.0	2.2	2.3	2.0	1.3
STATIC [u=u30] incl. safety factor 1.5	283	184	132	117	168	224	233	263	308	267	259	219
DAF ₃₀	0.6	0.6	0.7	0.9	0.7	0.6	0.7	1.3	1.5	1.5	1.3	0.8

Off Chara winda

Share winde

SMA based on U₃₀

270°	DMA = 1022 kN	SMA = 372 kN	DAF = 2.7
90°	DMA = 125 kN	SMA = 81 kN	DAF = 1.6

Results

Maximum Line Loads

Limiting wind speed

Results

Maximum Line Loads time series – Containership project

Peak loads – Dynamic response of the ship

Conclusions

- There is a significant difference between the maximum line (and bollard) force determined by a SMA and DMA
 - SMA safe conditions / DMA non-safe conditions
 - Other Containerships, RoRo, Cruise ships, ...
- A SMA for large moored container ships in wind yields optimistic results:
 - Moored ship responds dynamically to gusting wind
 - Resulting in large peak loads in the lines
 - Large peak loads not modelled in a SMA
- Dynamic response depends on various parameters, basically:
 - Wind force (varying in time), mass and spring, e.g.:
 - Displacement, mooring configuration, line specifications, etc.

Conclusions

- Shore winds / Offshore winds (Fenders!)
- Applying 30s gust wind in combination with a DAF helps but it is not an accurate description of the physics
- For considered mooring case is the DAF is equal to 0.8 to 2.7 (2.0 to 2.5 other case):
 - DAF: Ratio maximum mooring line force based on DMA / SMA (wind angle / speed)
 - Safety factor = 3.0! (ROM 0.2-90 dynamic factor 2.0)
- Important when doing a SMA:
 - In general, what value for the DAF will you apply? How do you know?
 - And last but not least, what do you win by doing a SMA including DAF compared to a DMA?

Conclusions

• Large difference between SMA and DMA for a ship in wind also visible for:

- Further developments: Apply DAF to any kind of time-varying loads
 - Waves, current, passing ship effect, …

